SHARE

Eliminating use of animals from farm land and use of artificial fertilizer in farms – these two steps are enough to recognize current western civilization as most barbaric and idiotic society.

India – this land and her culture, instead of leading the world for sustainable future, is under same trap. Thanks to her idiot and selfish children. The Political terrorists.

Nutrients

==========================

Everyone should read this paper. Realize the unity in diversity. Sanatana principle of give and take. Mutual existence. Synergy.

Nature has its own economy, with trading as dynamic as that of any stock exchange. To cope with nutrient deficiencies in their respective habitats, certain plants, animals and fungi have evolved partnerships by which they can swap resources.

But the economic tradeoffs in the natural marketplace are becoming unbalanced by nutrient pollution, most of which can be traced back to nitrogen fertilizers and fossil-fuel consumption. The partners have evolved a reciprocal exchange whereby the heterotroph provides metabolic waste — nitrogen and phosphorus — to the phototroph, which requires these key nutrients to survive. In return, the phototroph supplies its partner with photosynthetically fixed carbon as sugar that the heterotroph uses for energy.

“When you start to add more and more of the nutrients that the animal would normally be providing, the plant is no longer as dependent on that animal for those nutrients and so it starts to return less of the sugars back to the animal,” explained lead author Shantz, a doctoral candidate in the Burkepile Community Ecology Laboratory.


Research


Nutrient loading alters the performance of key nutrient exchange mutualisms

Abstract

Nutrient exchange mutualisms between phototrophs and heterotrophs, such as plants and mycorrhizal fungi or symbiotic algae and corals, underpin the functioning of many ecosystems. These relationships structure communities, promote biodiversity and help maintain food security. Nutrient loading may destabilise these mutualisms by altering the costs and benefits each partner incurs from interacting. Using meta-analyses, we show a near ubiquitous decoupling in mutualism performance across terrestrial and marine environments in which phototrophs benefit from enrichment at the expense of their heterotrophic partners. Importantly, heterotroph identity, their dependence on phototroph-derived C and the type of nutrient enrichment (e.g. nitrogen vs. phosphorus) mediated the responses of different mutualisms to enrichment. Nutrient-driven changes in mutualism performance may alter community organisation and ecosystem processes and increase costs of food production. Consequently, the decoupling of nutrient exchange mutualisms via alterations of the world’s nitrogen and phosphorus cycles may represent an emerging threat of global change.

Give and Take

Researchers analyze how nutrient pollution can negatively impact important ecological relationships

Nature has its own economy, with trading as dynamic as that of any stock exchange. To cope with nutrient deficiencies in their respective habitats, certain plants, animals and fungi have evolved partnerships by which they can swap resources.

However, according to a new study by UC Santa Barbara researchers Deron Burkepile and Andrew Shantz, excess nutrient input — or nutrient pollution —creates an imbalance in the interactions between partner — also known as mutualistic — species across a variety of ecosystems. The culprit: nitrogen fertilizers and fossil-fuel combustion. Their findings appear in the journal Ecology Letters.

In a very short period of time, Burkepile noted, humans have short-circuited the tight recycling of nutrients between mutualistic species, and this in turn has changed the balance of how such partners interact.

“That’s especially important because lots of these organisms are the foundation species of ecosystems without which the ecosystem would cease to exist,” said Burkepile, an associate professor in UCSB’s Department of Ecology, Evolution, and Marine Biology.

Take, for example, reef-building coral, which contain tiny algae that allow for rapid growth even when nutrient stores are low. “The presence of coral is what makes a coral reef,” Burkepile continued. “Without the association between coral and its symbiotic algae, you wouldn’t have coral reefs. Rainforest trees are what make those systems rainforests, and interactions with microbes are what drive the success of those plants.

“This research,” he added, “really focused on big important organisms within many different ecosystems, so the problem is a worldwide phenomenon.”

These give-and-take scenarios — as with corals and algae — occur between a phototroph, an organism that makes its own food through the process of photosynthesis, and a heterotroph, which must look to its environment for food.

But the economic tradeoffs in the natural marketplace are becoming unbalanced by nutrient pollution, most of which can be traced back to nitrogen fertilizers and fossil-fuel consumption. The partners have evolved a reciprocal exchange whereby the heterotroph provides metabolic waste — nitrogen and phosphorus — to the phototroph, which requires these key nutrients to survive. In return, the phototroph supplies its partner with photosynthetically fixed carbon as sugar that the heterotroph uses for energy.

“When you start to add more and more of the nutrients that the animal would normally be providing, the plant is no longer as dependent on that animal for those nutrients and so it starts to return less of the sugars back to the animal,” explained lead author Shantz, a doctoral candidate in the Burkepile Community Ecology Laboratory.

LEAVE A REPLY