Fish lives in water and birds spend time in the sky. Man spends life on the earth. It is mother earth who acts as continuous fostering medium. We used to remain in touch with mother earth for long until recent times when we have started distancing self from the earth.
From shoes to mattresses to high-rise residential complex, we have added layers of insulation, so much so that our touch to soil is no more gentle and prolonged.
In absence of direct touch, our body is never allowed to ground negative energy and physical toxins.
Two practices are must for the modern man to survive against most toxic environment ever.
- Walking on the surface of earth bare-foot. At least 30 mins a day
- Sleeping on the surface of earth/on floor
Sharing this interesting paper about clay’s medicinal properties.
Research
Kisameet Clay Exhibits Potent Antibacterial Activity against the ESKAPE Pathogens
http://mbio.asm.org/content/7/1/e01842-15
ABSTRACT
The ESKAPE (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter species) pathogens cause an increasing number of nosocomial infections worldwide since they escape the inhibitory effect of the available antibiotics and the immune response. Here, we report the broad-spectrum and potent antibacterial activity of Kisameet clay, a natural clay mineral from British Columbia, Canada, against a group of multidrug-resistant ESKAPE strains. The results suggest that this natural clay might be developed as a therapeutic option for the treatment of serious infections caused by these important pathogens.
IMPORTANCE More than 50 years of misuse and overuse of antibiotics has led to a plague of antibiotic resistance that threatens to reduce the efficacy of antimicrobial agents available for the treatment of infections due to resistant organisms. The main threat is nosocomial infections in which certain pathogens, notably the ESKAPE organisms, are essentially untreatable and contribute to increasing mortality and morbidity in surgical wards. The pipeline of novel antimicrobials in the pharmaceutical industry is essentially empty. Thus, there is a great need to seek for new sources for the treatment of recalcitrant infectious diseases. We describe experiments that demonstrate the efficacy of a “natural” medicine, Kisameet clay, against all of the ESKAPE strains. We suggest that this material is worthy of clinical investigation for the treatment of infections due to multidrug-resistant organisms.
First Nations’ ancient medicinal clay shows promise against today’s worst bacterial infections
news.ubc.ca/2016/01/26/first-nations-ancient-medicinal-clay-shows-promise-against-todays-worst-bacterial-infections/
The so-called ESKAPE pathogens — Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter species — cause the majority of U.S. hospital infections and effectively ‘escape’ the effects of antibacterial drugs.
“Infections caused by ESKAPE bacteria are essentially untreatable and contribute to increasing mortality in hospitals,” said UBC microbiologist Julian Davies, co-author of the paper published today in the American Society for Microbiology’s mBio journal.
“After 50 years of over-using and misusing antibiotics, ancient medicinals and other natural mineral-based agents may provide new weapons in the battle against multidrug-resistant pathogens.”
The clay deposit is situated on Heiltsuk First Nation’s traditional territory, 400 kilometres north of Vancouver, Canada, in a shallow five-acre granite basin. The 400-million kilogram (400,000 tonne) deposit was formed near the end of the last Ice Age, approximately 10,000 years ago.
Local First Nations people have used the clay for centuries for its therapeutic properties—anecdotal reports cite its effectiveness for ulcerative colitis, duodenal ulcer, arthritis, neuritis, phlebitis, skin irritation, and burns.
“We’re fortunate to be able to partner with UBC on this significant research program” said Lawrence Lund, president of Kisameet Glacial Clay, a business formed to market cosmetic and medicinal products derived from the clay. “We hope it will lead to the development of a novel and safe antimicrobial that can be added to the diminished arsenal for the fight against the ESKAPE pathogens and other infection-related health issues plaguing the planet.”
In the in vitro testing conducted by Davies and UBC researcher Shekooh Behroozian, clay suspended in water killed 16 strains of ESKAPE bacteria samples from sources including Vancouver General Hospital, St. Paul’s Hospital, and the University of British Columbia’s wastewater treatment pilot plant.
No toxic side effects have been reported in the human use of the clay, and the next stage in clinical evaluation would involve detailed clinical studies and toxicity testing. Loretta Li, with UBC’s Department of Civil Engineering, is conducting mineralogical and chemical analyses of the clay as well. MITACS, Kisameet Glacial Clay Inc. and the Tally Fund supported the work.