Dam Removals

Most pompous govt of Indian project i.e. River linking will build numerous dams and reservoirs across India.

The prolonged history of industrialization, flood control, and hydropower production has led to the construction of 80,000 dams across the U.S. generating significant hydrologic, ecological, and social adjustments.

Now that they are facing ecological disasters, aging infrastructure, risks and costs associated with safety and maintenance, and environmental concerns, England and USA are removing dams one by one!

Instead of learning from their blunders, India is planning to build yet another network of dams and reservoirs!


River restoration by dam removal: Enhancing connectivity at watershed scales

One of the pressing challenges facing biophysical scientists, policy makers, environmental managers, and environmental advocates is how to rehabilitate ecological systems that are increasingly characterized by long-term, significant, and complex anthropogenic changes.

Over the past several decades, more than 1,100 dams have been removed nationally!

Recent estimates indicate that more than 60 dams are being removed per year (Service, 2011a)

Because dam removal can minimize habitat fragmentation and re-establish longitudinal and lateral connectivity (Bednarek, 2001Hart et al., 2002), many ecologists and environmentalists embrace dam removal as a key component of river restoration.

Regional benefits from dam removal

Our region-wide analysis points to the greater scale of restoration associated with dam removal, and its ability to regenerate a suite of riverine processes including enhanced sediment connectivity, unfragmenting watersheds to allow fish passage, and the opening up significant river length and important habitat for resident and diadromous fish. Dam removal is progressively becoming part of the management toolkit nationally, and our results point to the greater potential for re-connectivity at the watershed scale and, perhaps more importantly, for enhanced watershed resilience. Accordingly, our results point to some unexpected biophysical benefits of undamming New England rivers. Dam removal is at best presented by restoration advocates as a means of enhancing fish passage and returning watersheds to some previous state that is virtually impossible to determine with precision. Some of these claims are accurate, but there is a value added to dam removal that is rarely voiced. This value is related to the capacity of dam removal to increase watershed resilience—as evidenced by the opening up of critical upstream habitats for certain fish species—in the context of large-scale and enduring anthropogenic changes (e.g., climate change).