It confirms once more that:

  1. the inflamed organs end into cancer
  2. Prana heals (Here, in form of microbes that releases chemical to stop the cancer proliferation signals



With these special bacteria, a broccoli a day can keep the cancer doctor away

Colorectal cancer is one of the most common cancers in the world, especially the developed world. Although the 5-year survival rates for earlier stages of this cancer are relatively good, at later stages survival goes down and the risk of cancer recurrence goes up considerably.

At the heart of this cancer-targeting system is an engineered form of E. coli Nissle, a harmless type of bacteria found in the gut. Using genetic techniques, the team engineered the bacteria into a probiotic that attached to the surface of colorectal cancer cells and secreted an enzyme to convert a substance found in cruciferous vegetables (like broccoli) into a potent anticancer agent. The idea was for the cancer cells in the vicinity to take up this anticancer agent and be killed. Normal cells cannot do this conversion, nor are they affected by the toxin, thus the system should be targeted only to colorectal cancer cells.

True enough, the mixture of engineered probiotics with a broccoli extract or water containing the dietary substance killed more than 95% of colorectal cancer cells in a dish. Moreover, the mixture had no effect on cells from other types of cancer such as breast and stomach cancer. Strikingly, the probiotics-veggie combination reduced tumour numbers by 75% in mice with colorectal cancer. Also, the tumours that were detected in these mice were 3 times smaller than those in control mice which were not fed with the mixture.

Dietary Sulforaphane in Cancer Chemoprevention: The Role of Epigenetic Regulation and HDAC Inhibition

Significance: Sulforaphane, produced by the hydrolytic conversion of glucoraphanin after ingestion of cruciferous vegetables, particularly broccoli and broccoli sprouts, has been extensively studied due to its apparent health-promoting properties in disease and limited toxicity in normal tissue. Recent Studies: Recent identification of a sub-population of tumor cells with stem cell-like self-renewal capacity that may be responsible for relapse, metastasis, and resistance, as a potential target of the dietary compound, may be an important aspect of sulforaphane chemoprevention. Evidence also suggests that sulforaphane may target the epigenetic alterations observed in specific cancers, reversing aberrant changes in gene transcription through mechanisms of histone deacetylase inhibition, global demethylation, and microRNA modulation. Critical Issues: In this review, we discuss the biochemical and biological properties of sulforaphane with a particular emphasis on the anticancer properties of the dietary compound. Sulforaphane possesses the capacity to intervene in multistage carcinogenesis through the modulation and/or regulation of important cellular mechanisms. The inhibition of phase I enzymes that are responsible for the activation of pro-carcinogens, and the induction of phase II enzymes that are critical in mutagen elimination are well-characterized chemopreventive properties. Furthermore, sulforaphane mediates a number of anticancer pathways, including the activation of apoptosis, induction of cell cycle arrest, and inhibition of NFκB. Future Directions: Further characterization of the chemopreventive properties of sulforaphane and its capacity to be selectively toxic to malignant cells are warranted to potentially establish the clinical utility of the dietary compound as an anti-cancer compound alone, and in combination with clinically relevant therapeutic and management strategies. Antioxid. Redox Signal. 22, 1382–1424.