Ginger Cancer

What is cancer cell?

Some dirty cell of your body? No. This body is wonderful gift. Nature does not act dirty. You and me do. Cancer cell is ordinary cell with cancerous tendency. Such tendency is expected due to cellular level stress. This stress is due to mental stress, physical stress (Food, water, air pollution) and environmental stress. Prolonged stress.

No cell loves to act cancerously. If you help them reduce local and global stress, they prefer to live happy life for you.

Cancer stem cells is a step before Cancer Cells. Cancer stem cells (CSCs) pose a serious obstacle to cancer therapy as they can be responsible for poor prognosis and tumour relapse.

It is shown by this research paper that Ginger compounds act against CSCs and inhibits them.

So is this the solution? No! Why should we even invite cancer? Prevention is always better than cure. Having ginger in diet can help but more than that stress-free life is more important! The root of all sicknesses start with weak mind!

Beware! Ginger and Turmeric are found 10000 times more effective than Chemotherapy. Now, we will have flood industrial farming of ginger and turmeric. That will follow genetically modified Ginger and Turmeric. That is how species are destroyed by Idiot science.


6-Shogaol Inhibits Breast Cancer Cells and Stem Cell-Like Spheroids by Modulation of Notch Signaling Pathway and Induction of Autophagic Cell Death


Cancer stem cells (CSCs) pose a serious obstacle to cancer therapy as they can be responsible for poor prognosis and tumour relapse. In this study, we have investigated inhibitory activity of the ginger-derived compound 6-shogaol against breast cancer cells both in monolayer and in cancer-stem cell-like spheroid culture. The spheroids were generated from adherent breast cancer cells. 6-shogaol was effective in killing both breast cancer monolayer cells and spheroids at doses that were not toxic to noncancerous cells. The percentages of CD44+CD24/low cells and the secondary sphere content were reduced drastically upon treatment with 6-shogaol confirming its action on CSCs. Treatment with 6-shogaol caused cytoplasmic vacuole formation and cleavage of microtubule associated protein Light Chain3 (LC3) in both monolayer and spheroid culture indicating that it induced autophagy. Kinetic analysis of the LC3 expression and a combination treatment with chloroquine revealed that the autophagic flux instigated cell death in 6-shogaol treated breast cancer cells in contrast to the autophagy inhibitor chloroquine. Furthermore, 6-shogaol-induced cell death got suppressed in the presence of chloroquine and a very low level of apoptosis was exhibited even after prolonged treatment of the compound, suggesting that autophagy is the major mode of cell death induced by 6-shogaol in breast cancer cells. 6-shogaol reduced the expression levels of Cleaved Notch1 and its target proteins Hes1 and Cyclin D1 in spheroids, and the reduction was further pronounced in the presence of a γ-secretase inhibitor. Secondary sphere formation in the presence of the inhibitor was also further reduced by 6-shogaol. Together, these results indicate that the inhibitory action of 6-shogaol on spheroid growth and sustainability is conferred through γ-secretase mediated down-regulation of Notch signaling. The efficacy of 6-shogaol in monolayer and cancer stem cell-like spheroids raise hope for its therapeutic benefit in breast cancer treatment.