Estrogen epidemic
Estrogen epidemic

So when you aboard a train or a bus or go on long drive, you prefer to carry bottled water with you. This relatively new habit (20-25 years old in society.) started becoming norm in last decade. Recent research  identified some 24,520 different chemicals present in the tested water. Some of them hampering hormonal balance. Great, right? Buy hormonal imbalance in name of pure water with 300% oxygen rich!

Remember one thing, never get blindfolded by technology. 🙂 Be sensitive for life style. Rely on natural source, as much as possible.

Some dots to connect:

  1. Ever wondered why children in elite class grow abnormally faster and reach puberty early?
  2. Ever wondered why in general, there is estrogen rage? Early puberty for girls, girlish men and abnormal sexual inclination?

Following researches are the answer.


Identification of Putative Steroid Receptor Antagonists in Bottled Water: Combining Bioassays and High-Resolution Mass Spectrometry

Endocrine disrupting chemicals (EDCs) are man-made compounds interfering with hormone signaling and thereby adversely affecting human health. Recent reports provide evidence for the presence of EDCs in commercially available bottled water, including steroid receptor agonists and antagonists. However, since these findings are based on biological data the causative chemicals remain unidentified and, therefore, inaccessible for toxicological evaluation. Thus, the aim of this study is to assess the antiestrogenic and antiandrogenic activity of bottled water and to identify the causative steroid receptor antagonists. We evaluated the antiestrogenic and antiandrogenic activity of 18 bottled water products in reporter gene assays for human estrogen receptor alpha and androgen receptor. Using nontarget high-resolution mass spectrometry (LTQ-Orbitrap Velos), we acquired corresponding analytical data. We combined the biological and chemical information to determine the exact mass of the tentative steroid receptor antagonist. Further MSn experiments elucidated the molecule’s structure and enabled its identification. We detected significant antiestrogenicity in 13 of 18 products. 16 samples were antiandrogenic inhibiting the androgen receptor by up to 90%. Nontarget chemical analysis revealed that out of 24520 candidates present in bottled water one was consistently correlated with the antagonistic activity. By combining experimental and in silico MSn data we identified this compound as di(2-ethylhexyl) fumarate (DEHF). We confirmed the identity and biological activity of DEHF and additional isomers of dioctyl fumarate and maleate using authentic standards. Since DEHF is antiestrogenic but not antiandrogenic we conclude that additional, yet unidentified EDCs must contribute to the antagonistic effect of bottled water. Applying a novel approach to combine biological and chemical analysis this is the first study to identify so far unknown EDCs in bottled water. Notably, dioctyl fumarates and maleates have been overlooked by science and regulation to date. This illustrates the need to identify novel toxicologically relevant compounds to establish a more holistic picture of the human exposome.

ENDOCRINE DISRUPTORS: Estrogens in a Bottle?

Much of our exposure to endocrine disruptors occurs through what we eat and drink—in some cases, chemicals such as plasticizers may have migrated from food or beverage packaging. The possibility that these chemicals end up in commonly consumed beverages was the focus of two recent European studies that found evidence of estrogenic activity in mineral water. Both studies focused on the estrogenic potential of mineral water bottled in polyethylene terephthalate (PET) plastic, the material constituting most convenience−size beverage bottles sold in the United States today.

In the first study, published in the March 2009 International Journal of Hygiene and Environmental Health, a recombinant yeast−based in vitro assay was used to assess estrogenic activity in 30 PET−bottled mineral water samples. Ninety percent of the samples tested negative for estrogenic activity. Of the remaining samples, most showed measurements corresponding to a range of 14–23 ng/L estradiol equivalents—similar to the estrogen burden posed by treated drinking water derived from groundwater and river water (15 and 17 ng/L estradiol equivalents, respectively).

Of the estrogen−positive samples, authors Barbara Pinto and Daniela Reali, investigators in the University of Pisa Department of Experimental Pathology, say the water may have been contaminated at its source, during processing, or after bottling. They cite several studies showing that suboptimal storage conditions—such as prolonged exposure to sunlight and high temperatures—can cause leaching of chemicals from PET bottles into fluid contents, and point out that “cell toxicity was observed for water samples of the same lot of three different brands purchased from the same retailer.”